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Abstract

Critical fatigue problems often occur in mistuned cyclic structures since their forced vibration responses
are often much larger than those of perfectly tuned structures. Therefore, it is of great importance to predict
the forced vibration responses of mistuned cyclic structures for their safe and reliable designs. In this paper,
a simplified model for mistuned cyclic structures is chosen to investigate vibration localization phenomena.
The effects of mistuning, stiffness coupling, and damping on the variations of maximum forced vibration
responses of the model are examined through numerical study. It is found that strong vibration localization
occurs under certain relations among mistuning, stiffness coupling, and damping. It is also found that the
maximum forced vibration response asymptotically increases as the number of repeated subcomponents of
the cyclic structure increases.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cyclic structures can be found in several engineering systems. Aircraft rotor and turbine blades
are typical examples of such systems. Repeated subcomponents of cyclic structures are usually
manufactured identically. However, there always exist small, random differences among the
subcomponents due to manufacturing tolerances, in-operation wear, and so forth. These
differences, which are usually called mistuning, often cause significant increase in the forced
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vibration responses of cyclic structures. The maximum forced vibration response of a
subcomponent of a mistuned cyclic structure is often much larger than that of a perfectly tuned
cyclic structure. Thus mechanical energy stored in a subcomponent of a mistuned cyclic structure
is much different from those stored in other subcomponents. This is called the vibration
localization of a mistuned cyclic structure. In order to avoid unexpected premature failures of a
cyclic structure, the effect of mistuning on the vibration localization needs to be investigated
thoroughly.
Cyclic structures consist of a subset of periodic structures. The vibration localization occurred

in a periodic structure has been the subject of a number of theoretical studies [1–4]. Ewins [1]
showed that the maximum forced response increases with increasing mistuning up to certain level,
but further increase in mistuning results in lower forced response amplitudes. Afolabi’s
investigation [5] concluded that the blade with the most mistuning is likely to be the blade with
the largest amplitude. Griffin and Hoosac [6] showed that blades with cantilever frequencies close
to coupled blade-disk frequencies usually respond with the greatest amplitude. These different and
somewhat conflicting conclusions may have originated from the different models and parameter
values used in the studies. Wei and Pierre [7] gave a physical explanation for most of these
discrepancies, and introduced intentional mistuning into the design of bladed disks in order to
reduce the maximum forced response [8]. Recently, Lin and Mignolet [9] investigated the effect of
damping mistuning of the bladed disks, and found that damping mistuning is potentially more
dangerous for the forced responses. In general, all the previous studies show that mistuning may
result in undesirable effects on the forced vibration response of periodic structures. However, the
combined effects of mistuning, coupling, and damping have not been investigated in the previous
studies. Furthermore, the influence of the number of subcomponents on the vibration response
has not been investigated thoroughly yet.
In this paper, the combined effects of mistuning, stiffness coupling, and damping on vibration

localization of cyclic structures are investigated. A coupled pendulum system, which represents
coupled cyclic structures, is chosen for the investigation. The simplicity of the system makes it
possible to provide an effective way to understand the characteristics of the vibration localization
phenomena involved in cyclic structures. The primary objective of the present study is to find the
relations among mistuning, stiffness coupling, and damping that cause strong vibration
localization in coupled cyclic structures. The maximum (or minimum) forced vibration amplitudes
of the cyclic structures are examined around their natural frequencies. The influence of the
number of subcomponents of the cyclic structures on the maximum (or minimum) forced
vibration amplitude is also investigated. These investigations employing the simplified model will
provide easy and clear explanation of vibration localization phenomena. The conclusions drawn
from this study employing the simple model are true not only for the simple model itself but also
for general cyclic structures. Therefore, they can be used as valuable guidelines for safe and
reliable designs of general coupled cyclic structures.

2. Simplified model of coupled cyclic structure

Cyclic structures have repeated subcomponents that have identical structural topology
including geometry, stiffness coupling, damping and so forth. The mistuning of a cyclic structure
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results from small structural irregularities such as length difference. Fig. 1 shows a planar coupled
pendulum system which has the same mass m; the same torsional stiffness kr; and slightly different
lengths li: Each pendulum is coupled by two identical translational springs of modulus kt: The
distance from a hinge point to the point where translational springs are attached is a: Even though
damping symbols do not appear in Fig. 1, linear viscous proportional damping force (with
damping constant c) is assumed to act on each pendulum mass. The resulting damping force is
given in Eq. (1) shown below. Each pendulum mass is also excited by external sinusoidal
harmonic force having magnitude F0 and frequency O: The equations of motion of this pendulum
system can be derived as follows:
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Fig. 1. Multiple coupled pendulum system.
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To obtain more general and useful conclusions from the equations of motion, dimensionless
parameters and a dimensionless variable are defined as follows:
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where l represents the nominal length of the pendulums and
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Employing these dimensionless parameters and variable, Eq. (1) can be rewritten in a
dimensionless form as follows:
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where a dot over a symbol now represents the differentiation of the symbol with respect to t
(instead of t). The steady state solutions of the above equations can be written as follows:

yi ¼ ai cosotþ bi sinot ði ¼ 1; 2;y; nÞ: ð5Þ

Substituting Eq. (5) into Eq. (4), one obtains the following algebraic relations:
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By solving Eq. (6), one can determine the coefficients ai’s and bi’s which constitute the column
matrices a and b: By using the coefficients, one can obtain the dynamic magnification factors as
follows:

ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i

q
=f : ð8Þ

In the next section, the vibration localization phenomena occurred in the mistuned pendulum
system will be investigated by obtaining and comparing the dynamic magnification factors.

3. Numerical results and discussion

In this section, the effects of mistuning, coupling, and damping on the forced vibration
responses are investigated. First, the simplest coupled pendulum system (double pendulum
system) is employed for the investigation. In this system, the length of the first pendulum is taken
as the nominal length. Therefore, there exists only one parameter a which is related to mistuning.
Actually the mistuning of this system is the difference between a and 1.
Fig. 2 shows the frequency variations of dynamic magnification factors for the two pendulums.

The dimensionless coupling parameter b ¼ 0:005 and the damping parameter g ¼ 0:01 are used
for the numerical results. These values represent a weakly coupled, lightly damped system.
Fig. 2(a) shows the frequency variations of the two pendulums with very small mistuning ða ¼
1:001Þ: As one may expect, the two results show little difference. Now, as the mistuning increases
up to 1% ða ¼ 1:01Þ; the two results show significant difference as shown in Fig. 2(b). This
indicates that even small non-uniformity among subcomponents of a cyclic structure may cause
large difference in forced vibration response. When the mistuning increases more (for instance,
a ¼ 1:05; as shown in Fig. 2(c)), the difference in maximal forced vibration response decreases.
Thus, the mistuning up to certain level causes significant difference in maximal forced dynamic
response. These results are in consistent with the results that were previously obtained by Ewins
[1]. Fig. 3 exhibits the overall tendency clearly. The difference between the two maximal dynamic
magnification factors becomes maximized when the mistuning is around 1% ða ¼ 1:01Þ: As the
mistuning increases more, the difference decreases. The coupling parameter b used to obtain these
results is 0.005 and the damping parameter g is 0.01. With a different coupling parameter, one
may obtain the maximal dynamic magnification factor at different length ratio. Such results will
be given later in Fig. 5.
There is one important thing that should be emphasized here. The maximal dynamic

magnification factors should be compared even though they occur at slightly different frequencies.
This is because the external force applied to a cyclic structure usually has a spread (if not wide)
frequency range. Since the mistuning of a cyclic structure is usually not large, the frequencies of
maximal dynamic magnification factors are not separated far. Thus, they are embraced by the
frequency range of the external force applied to a cyclic structure. Comparing the two dynamic
magnification factors at each identical frequency only leads to a trivial conclusion that the
difference between the two dynamic magnification factors increases monotonically as a increases.
Fig. 4 shows the effect of damping on the forced vibration responses. The dimensionless

parameters a ¼ 1:01 and b ¼ 0:005 are used for the numerical results. Fig. 4(a) shows the
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Fig. 2. Dynamic magnification factors of a weakly coupled, lightly damped system with three different length ratios.

(a) a ¼ 1:001; b ¼ 0:005; g ¼ 0:01; (b) a ¼ 1:01; b ¼ 0:005; g ¼ 0:01; (c) a ¼ 1:05; b ¼ 0:005; g ¼ 0:01:

Fig. 3. Variations of dynamic magnification factors due to length ratio variation (g ¼ 0:01 for these results).
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frequency responses of the pendulums under relatively strong damping ðg ¼ 0:03Þ: This indicates
that strong damping results in the small difference in maximal forced vibration response of the
mistuned pendulums. But as shown in Fig. 4(b) and (c), as the damping decreases, the difference
in the maximal forced vibration response increases significantly.
Fig. 5 shows the combined effect of the mistuning, the coupling, and the damping. Darker area

represents stronger vibration localization in this figure. It can be observed that certain conditions
between the mistuning and the coupling can cause strong localization effect. In general, if the
mistuning increases, the coupling should be also increased to obtain strong localization effect.
Even if the mistuning and the coupling are very small, strong localization may occur if the
damping remains small (see Fig. 5(a)). Now, as the damping increases, the vibration localization is
significantly reduced. Fig. 5(c) also shows that maximum localization (under relatively strong
damping) occurs when both of the mistuning and the coupling increase in an approximately
proportional way.
Since a cyclic structure has many repeated subcomponents, the effect of the number of

subcomponents on the vibration localization needs to be investigated. Therefore, the equations of

Fig. 4. Dynamic magnification factors of a weakly coupled system with three different damping parameters.

(a) a ¼ 1:01; b ¼ 0:005; g ¼ 0:03; (b) a ¼ 1:01; b ¼ 0:005; g ¼ 0:01; (c) a ¼ 1:01; b ¼ 0:005; g ¼ 0:003:
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motion derived in the previous section are solved for the cases of having more than two
pendulums. Solutions of dynamic magnification factors are first obtained at every grid point of
parametric region. Then, the maximal and the minimal values and the corresponding grid points
are searched. If one divides a parameter with 10 grids, adding one more parameter results in 10
times computation time. Since practical cyclic structures have large number of degrees of freedom
(at least 80–100 degrees of freedom), they have large number of parameters. Thus, it requires
prohibitively tremendous amount of computation time to find the maximal and the minimal
responses and the corresponding grid points for such systems. Therefore, in this paper, the
maximal number of degrees of freedom is restricted to five at most. The conclusions drawn from
the small degrees of freedom system, however, can be applied to practical systems without loosing
generality.

Fig. 5. Distribution of the maximal dynamic magnification factor in a� b plane with three different damping

parameters. (a) g ¼ 0:001; (b) g ¼ 0:01; (c) g ¼ 0:03:
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Table 1 shows the dimensionless parameter values at which maximal dynamic magnification
factors appear. For these results, the dimensionless damping parameter g and the dimensionless
coupling parameter b are fixed to 0.01 and 0.005, respectively. The number of subcomponents of
cyclic structure varies from two to five. As shown in these results, small non-uniformity in a cyclic
structure may cause large difference in forced vibration response. For example, about 1%
mistuning of five-coupled pendulums can cause 34:5% larger forced vibration response than those
of the perfectly tuned assembly. Among the pendulums, the pendulum that has the largest length
generates the strongest response. These results also show that the maximal forced vibration
response increases as the number of subcomponents increases. This indicates that a cyclic
structure having more subcomponents may be exposed to more serious vibration localization
effect. However, the increasing rate seems to decrease as the number of subcomponents increases.
Different from the condition for Table 1, the dimensionless coupling parameter b is not fixed to

obtain the results in Table 2 while the dimensionless damping parameter g is fixed to 0.01. It can
be observed that the maximal dynamic magnification factors (compared to those of Table 1)

Table 1

Length ratios that cause the maximum response at one of the pendulums under constant coupling and light damping

condition ðg ¼ 0:01Þ

a1 a2 a3 a4 a5

k1 k2 k3 k4 k5

n ¼ 2 1.000 1.012

ðb ¼ 0:005Þ 62.14 118.4

n ¼ 3 1.000 1.000 1.009

ðb ¼ 0:005Þ 69.24 69.24 128.9

n ¼ 4 1.000 1.003 1.011 1.003

ðb ¼ 0:005Þ 81.86 74.96 133.2 74.96

n ¼ 5 1.000 1.000 1.004 1.011 1.004

ðb ¼ 0:005Þ 85.19 85.19 78.44 134.5 78.44

Table 2

Length ratios that cause the maximum response at one of the pendulums under variable coupling and light damping

condition ðg ¼ 0:01Þ

a1 a2 a3 a4 a5

k1 k2 k3 k4 k5

n ¼ 2 1.000 1.024

ðb ¼ 0:012Þ 52.45 119.5

n ¼ 3 1.000 1.000 1.026

ðb ¼ 0:018Þ 53.13 53.13 134.4

n ¼ 4 1.000 1.020 1.000 1.043

ðb ¼ 0:029Þ 55.11 75.93 55.11 146.1

n ¼ 5 1.000 1.019 1.019 1.000 1.045

ðb ¼ 0:032Þ 59.20 71.03 71.03 59.20 155.7
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increase more when the coupling parameter b increases. The coupling parameter to obtain the
maximal dynamic magnification factors increases as the number of subcomponents increases.
Now, for the system having five-coupled pendulums, about 56% larger forced vibration response
can be obtained with 4:5% mistuning and the larger coupling parameter ðb ¼ 0:032Þ:
Table 3 shows the dimensionless parameter values at which minimal dynamic magnification

factors appear. As same as Table 1, the dimensionless damping parameter g and the dimensionless
coupling parameter b are fixed to 0.01 and 0.005, respectively. The number of subcomponents of
cyclic structure varies from two to five. These results show that the minimal forced vibration
response first increases and then decreases as the number of subcomponents increases. However,
the decreasing rate seems to decrease as the number of subcomponents increases. There is an
interesting result one can observe in the Table 3. Different from the maximal vibration results, the
pendulum of the minimal vibration response does not always have the smallest length. When
n ¼ 5; the minimal vibration response occurs at the pendulum of a4 instead of that of a1:

Table 3

Length ratios that cause the minimum response at one of the pendulums under constant coupling and light damping

condition ðg ¼ 0:01Þ

a1 a2 a3 a4 a5

k1 k2 k3 k4 k5

n ¼ 2 1.000 1.010

ðb ¼ 0:005Þ 58.72 118.3

n ¼ 3 1.000 1.004 1.010

ðb ¼ 0:005Þ 59.32 74.17 127.6

n ¼ 4 1.000 1.005 1.000 1.012

ðb ¼ 0:005Þ 53.90 109.4 53.90 130.4

n ¼ 5 1.000 1.001 1.015 1.008 1.023

ðb ¼ 0:005Þ 81.97 86.66 119.2 50.51 124.3

Table 4

Length ratios that cause the maximum response at one of the pendulums under constant coupling and larger damping

condition ðg ¼ 0:02Þ

a1 a2 a3 a4 a5

k1 k2 k3 k4 k5

n ¼ 2 1.000 1.015

ðb ¼ 0:005Þ 36.99 57.36

n ¼ 3 1.000 1.000 1.013

ðb ¼ 0:005Þ 41.83 41.83 59.77

n ¼ 4 1.000 1.008 1.020 1.008

ðb ¼ 0:005Þ 38.94 45.67 60.38 45.67

n ¼ 5 1.000 1.000 1.009 1.020 1.009

ðb ¼ 0:005Þ 43.48 43.48 46.75 60.50 46.75
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Comparing Tables 1 and 3, one can also figure out that the maximal and the minimal responses do
not occur at the same system configuration having identical length ratios.
Lastly, Table 4 shows the dimensionless parameter values at which maximal dynamic

magnification factors appear. For these results, however, the dimensionless damping parameter g
is fixed to 0.02. By comparing the results of this table with those of Table 1, one can easily see that
how much damping affects the magnitudes of maximal dynamic magnification factors. As the
damping parameter increases twice, the magnitudes decrease approximately half. It should be also
noted that the conditions to obtain the maximal dynamic magnification factors change even
though the largest pendulum still has the strongest vibration response.

4. Conclusions

In the present work, the conditions that cause strong vibration localization effects are
investigated. A simplified model of cyclic structures (a multiple coupled pendulum system) is
employed for this investigation. The parameters of mistuning, coupling, and damping are
identified and their effects on the vibration localization effects are examined through numerical
simulations. It is found that certain conditions relating mistuning, coupling, and damping can
cause strong vibration localization phenomena. The pendulum having the largest length is likely
to have maximal vibration response. However, the pendulum having the smallest length does not
always have the minimal vibration response. It is also found that the maximal dynamic
magnification factor increases as the number of subcomponents of a mistuned cyclic structure
increases. The minimal dynamic magnification factor first increases and then decreases as the
number of subcomponents of a mistuned cyclic structure increases. However, the increasing or the
decreasing rate decreases as the number of subcomponents increases. As the number of
subcomponents increases, the coupling parameter should be increased to obtain the maximal
vibration response. These results provide overall insight into the vibration localization
phenomena of mistuned cyclic structures and provide useful guidelines for safe and reliable
designs of them.
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